Entrer un problème...
Algèbre linéaire Exemples
[31021-42-120]⎡⎢⎣31021−42−120⎤⎥⎦
Étape 1
Étape 1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
Étape 1.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[33130321-42-120]⎡⎢
⎢⎣33130321−42−120⎤⎥
⎥⎦
Étape 1.1.2
Simplifiez R1R1.
[113021-42-120]⎡⎢
⎢⎣113021−42−120⎤⎥
⎥⎦
[113021-42-120]⎡⎢
⎢⎣113021−42−120⎤⎥
⎥⎦
Étape 1.2
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
Étape 1.2.1
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
[11302-2⋅11-2(13)-4-2⋅02-120]⎡⎢
⎢
⎢⎣11302−2⋅11−2(13)−4−2⋅02−120⎤⎥
⎥
⎥⎦
Étape 1.2.2
Simplifiez R2R2.
[1130013-42-120]⎡⎢
⎢⎣1130013−42−120⎤⎥
⎥⎦
[1130013-42-120]⎡⎢
⎢⎣1130013−42−120⎤⎥
⎥⎦
Étape 1.3
Perform the row operation R3=R3-2R1R3=R3−2R1 to make the entry at 3,13,1 a 00.
Étape 1.3.1
Perform the row operation R3=R3-2R1R3=R3−2R1 to make the entry at 3,13,1 a 00.
[1130013-42-2⋅1-1-2(13)20-2⋅0]
Étape 1.3.2
Simplifiez R3.
[1130013-40-5320]
[1130013-40-5320]
Étape 1.4
Multiply each element of R2 by 3 to make the entry at 2,2 a 1.
Étape 1.4.1
Multiply each element of R2 by 3 to make the entry at 2,2 a 1.
[11303⋅03(13)3⋅-40-5320]
Étape 1.4.2
Simplifiez R2.
[113001-120-5320]
[113001-120-5320]
Étape 1.5
Perform the row operation R3=R3+53R2 to make the entry at 3,2 a 0.
Étape 1.5.1
Perform the row operation R3=R3+53R2 to make the entry at 3,2 a 0.
[113001-120+53⋅0-53+53⋅120+53⋅-12]
Étape 1.5.2
Simplifiez R3.
[113001-12000]
[113001-12000]
Étape 1.6
Perform the row operation R1=R1-13R2 to make the entry at 1,2 a 0.
Étape 1.6.1
Perform the row operation R1=R1-13R2 to make the entry at 1,2 a 0.
[1-13⋅013-13⋅10-13⋅-1201-12000]
Étape 1.6.2
Simplifiez R1.
[10401-12000]
[10401-12000]
[10401-12000]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2